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Introduction

In-flight wire strikes are a serious threat to U.S. Army
aviation during all-weather daytime and nighttime helicopter
operations, including: terrain flight, enclosed area takeoff and
landing, and confined area maneuvering. Despite training on wire
avoidance techniques, peacetime wire strikes and the resultant
loss of aircraft and life remain a serious problem. Previous
investigations of rotary wing wire strike accidents for the
periods of 1958-1965 (U. S. Army Aviation Materiel Laboratories,
1966), June 1966-June 1970 (Christian and Kuhns, 1971), July
1972-July 1976 (Mynard, 1977), and January 1974-August 1981
(Posey, et al., 1989) have shown a total of 553 wire strikes,
resulting in 118 fatalities, and damage in excess of $40 million
(these figures do not include the U.S. flying experience in
Vietnam). Wire strike data since 1981 have not been tabulated.
Inasmuch as a majority of mishaps have occurred during training
and over familiar sites, it can be assumed the wire impact threat
posed by combat operations in unfamiliar areas will increase.

The aviation training community at Fort Rucker, Alabama
employs a passive marking system for increasing the conspicuity
of high tension cables, electrical power lines, and telephone
wires. This system uses international-orange fiberglass spheres
having a diameter of approximately 11.5 inches. These spheres
are attached to the cables and wires at locations heavily used by
aircraft (Figure 1). Modification to the basic design consists
of the application of 1-1/2 inch wide white high-reflective tape
in a cross pattern. The conspicuity of the basic and modified
designs varies as a function of background, illumination level
(for both day and night with weather effects), sun (or other
bright source) angle, and viewing system (e.g., unaided eye,
thermal sensor, or image intensifier).

A proposed alternative marking system design has been
submitted to the Army. This new design is a molded
international-orange polyhedron with circular (2-1/2 inch
diameter) patterns of 3M Scotchlite Tm reflective sheeting applied
to the individual faces of the polyhedron (Figure 2). This
sheeting, similar to that used on civilian traffic control signs,
consists of prismatic lenses which are formed in a transparent
synthetic resin, sealed, and backed with a pressure-sensitive
adhesive. The sheeting design uses the principle of retroreflec-
tion to increase the wire marker's conspicuity.

The Aviation Training Battalion (ATB), Fort Rucker, Alabama
requested USAARL to compare performance between the current and
proposed wire marking systems.
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Figure 1. Current wire marker, international-orange sphere.

Figure 2. Marker enhancements include: (a) white reflective tape
in cross-pattern (left) and (b) proposed polyhedron
design with circular patterns of retroreflective
sheeting material (right).
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Methods

Subjects

Sixteen volunteer subjects, aged from 19-33 (average =

24.8), participated in the study. All participants were warrant
officer candidates awaiting the start of helicopter flight
training. All had passed the Army's Class I flight physical
requiring at least 20/20 or better uncorrected Snellen acuity and
normal color vision. Four subjects served as aeroscout observers
(military occupational specialty 93B) and had previous experience
with the AN/PVS-5 night vision goggle. The remaining subjects
had no previous helicopter flight time or goggle experien2e.

Wire markers

Five wire marker designs, all international-orange in color,
were tested. The designs were: I) uniform sphere, (2) sphere
with white reflective tape in a cross (X) pattern, (3) uniform
polyhedron, (4) polyhedron wit' circular patterns of white
retroreflective sheeting, and k5) polyhedron with circular
patterns of yellow retrorefle .tive sheeting. Each of the
polyhedrons were of the same shape with flat polygonal faces on
their outer surfaces. The designs included the two basic design

(a) (b) (c) (d) (e)

Figure 3. Wire marker test designs: (a) uniform sphere, (b)
sphere with light reflective tape in a cross (X)
design, (c) uniform polyhedron, (d) polyhedron with
circular patterns of white retroreflective sheeting,
(e) polyhedron with circular patterns of yellow retro-
reflective sheeting.
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Figure 4. Wire marker mounted on pole.
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Figure 5. Schematic drawing of test field.
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geometries (markers 1,3) and enhanced (reflective) versions of
each (markers 2,4,5). The markers, shown in Figure 3, were
provided by ATB.

Procedure

The study was conducted in two phases at Skelly stagefield
near Opp, Alabama. In the first phase, the conspicuity of the
wire marker designs was investigated under clear and sunny
daytime conditions for the unaided eye with both the clear (class
1) and tinted (class 2) SPH-4 visors. Testing was accomplished
for two sun angles representing the positions of oblique morning
(0800-0900 hours) and overhead afternoon (1300-1400 hours) light.
The second phase was conducted at night (2100-2400) for the
unaided eye and with the AN/PVS-5 Night Vision Goggles (NVG) and
the Aviator's Night Vision Imaging System (ANVIS) image intensi-
fication systems. Each nighttime viewing condition was tested
under a number of different aircraft lighting conditions (see
below). Nighttime trials were conducted under clear weather and
lunar conditions of altitude greater than 30 degrees and fraction
of illumination greater than 23 percent. A matrix of all the
conditions tested is shown in Table 1.

In bo h phases, the wire markers were mounted on 10-foot
poles located at the southern end of the stagefield (Figure 4); a
tree line located behind the markers served as a relatively
uniform, unstructured background. In the daytime, the poles were
arranged in a single row at separation distances of 85 feet; at
night, the distance between the poles was reduced to 50 feet. A
pair of 4 X 4 foot wood panels, painted white and angled 45
degrees, were each positioned, in line, 40 feet and 70 feet,
respectively, in front of each pole. These were used as lane
markers to assist the subjects in identifying the target
positions from the aircraft (see below). (At night, chemical
light sticks were hung over each panel to facilitate identifying
their location.) From the center pole, a series of automobile
tires, painted white, were placed at intervals of 100 feet out to
a distance of 4200 feet (the maximum available working range of
the stagefield). These served both as observation points for the
subjects viewing the markers and as references points for the
pilots flying the aircraft. A schematic drawing of the test
field is shown in Figure 5.

The subjects viewed the markers while seated sideways in
either the left or right rear seats of the UH-l helicopter.
Subjects were tested four at a time, two on each side of the
aircraft (Seats 3 and 6 on the right and Seats 2 and 5 on the
left as shown in the UH-1 alternate seating plan [Department of
the Army Technical Manual 55-1520-210-10] (Figure 6). During
testing, the aircraft was maintained at a low hover (10-20 feet
above ground level (AGL)) and subjects viewed downrange via the
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open cargo doors. To ensure an unobstructed view, trials were
conducted with the aircraft turned 90 degrees left or right along
an axis perpendicular to the markers.

Table 1

Test design matrix.

Target Test
configuration conditions

Daytime Nighttime

Naked Tinted Naked NVG ANVIS
eye visor eye

Sun Sun Sun Sun Note Note
angle angle angle angle 1 2

1 2 1 2

Uniform
sphere X X X X X X X

Sphere with
cross pattern X X X X X X X

Uniform
polyhedron X X X X X X X

Polyhedron w/
white retro- X X X X X X X
reflectors

Polyh Jron w/
yellow retro- X X X X X X X
reflectors

Note 1 -- Aircraft lighting conditions: Unaided
(1) Position lights steady bright
(2) Anticollision light and position lights steady bright
(3) Search light and position lights steady bright
(4) No lights ("blackout")

Note 2 -- Aircraft lighting conditions: AN/PVS-5 and ANVIS
(1) Position lights steady dim
(2) Searchlight with "pink" filter
(3) No lights ("blackout")

Daylight trials

A detection threshold paradigm was selected to determine the
relative conspicuity of each marker design under daylight
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Figure 6. Subject seating in UH-l test aircraft.

conditions. Thresholds were determined using an ascending method
of limits together with a three-alternative forced choice pro-
cedure. On each trial, the target array consisted of a single
marker design sample and two empty poles. The subject's task was
to indicate on a data collection form the correct position of the
marker -- left, center, or right. A data collector, seated
between each pair of subjects (Seat 3; see Figure 6), monitored
subject responses and communicated instructions to the pilots.
Response feedback was not provided to the subjects.

As noted previously, daylight tests were conducted under two
ambient lighting conditions comprising two different sun angles
-- morning (oblique sun angle) and afternoon (direct overhead
sun). Trials began at the maximum viewing distance of 4200 feet.
After each response, the distance to the target was reduced by
100 feet and the trial continued. At each observation point, the
aircraft hover was directed right and left accordingly, and
subjects, one side at a time, were permitted a maximum of 10
seconds to indicate the target's position. (Subject viewing
order [right side/left side of aircraft] was alternated with each
trial.) Following the subjects' response, the aircraft hover-
taxied to the next observation point and the trial resumed.

Both the wire marker and its initial pole position was
varied randomly and exhaustively on each trial. Marker positions
(left, center, or right) also varied randomly as the aircraft
proceeded from one observation point to the next. For a given
trial, detection range was defined as the (longest) range as-
sociated with the first of three consecutive correct responses.
At any point, an incorrect response recycled the three-in-a-row
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correct response criterion. Three trials were run for each
marker design, yielding a total of 30 trials (15 per sun angle)
for each subject. For each marker, the subject's overall
detection range was calculated as the average of the three
trials.

Testing for each subject was conducted over a 2-day period.
On the morning of day-l, two subjects were tested with each visor
-- clear or tinted. Visors then were switched among the subjects
for the afternoon run. On day-2, visor wear was reversed.
Subjects wearing either clear or tinted visors on the previous
morning's test now wore the opposite visor on the morning of day-
2. The visors were then reversed again on the afternoon of day-
2. A total of four subjects were tested under each visor/sun
angle condition except for the tinted visor under sun angle 1 in
which three subjects were tested.

Nighttime trials

Because of the reduced ranges associated with low-light
viewing (for both pilots and subjects), several of the daytime
test procedures were modified to enhance safety of flight.
First, a modified descending method of limits was used to
determine detection threshold. Second, observations began at a
distance where the marker was known to be visible (under some
viewing conditions, as close as 100 feet). Third, only two of
the poles (marker lanes) -- center and right -- were used. The
general procedure was as follows: On each trial, the test marker
appeared on the right pole (from the subject's perspective) while
a standard, comparison marker (the polyhedron with yellow reflec-
tive sheeting) appeared in the center. (During preliminary
testing, this latter marker had the longest naked eye detection
range. During actual testing, it was used primarily to orient
the subjects gaze toward the test area. In addition, its
identity remained unknown to the subjects and its threshold
detection range was determined only while situated in the right
[test] lane.) The subject's task consisted of indicating whether
the right, left, both, or neither of the markers were visible.
As before, succeeding observations were made at 100-foot
intervals. However, instead of approaching the target, the
aircraft moved away from the target with each observation.
Detection threshold for each design was defined as the last
distance at which the marker was reported visible. Because of
the reduced pace of testing at night, only one trial per subject
was run for each viewing/lighting combination.

As shown in Table 1, each viewing mode was run under several
different aircraft lighting schemes. For unaided viewing,
testing was conducted under four aircraft lighting conditions,
including: (1) position ("running") lights steady bright;
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(2) anticollision lights and position lights steady bright;
(3) searchlight and position lights steady bright. For both the
unaided and aided trials, the searchlight was turned on and
rotated by the right-seat pilot 90 degrees right or left as the
aircraft hovered perpendicular to (and the subjects faced) the
targets. Targets were exposed by the beam for approximately 5
seconds; accurate target exposure was verified by the pilot
either naked eye or with an ANVIS tube when the pink filter was
used (see below). For aided viewing, three aircraft lighting
schemes were employed: (1) position light steady dim; (2)
searchlight with "pink" filter; and (3) no lights ("blackout").
Testing was conducted over a period of two nights -- unaided on
night-i and aided on night-2 with subjects tested four at a time.
A total of eight subjects were tested under unaided conditions
and four each with AN/PVS-5 and ANVIS image intensification
devices. Threshold detection ranges for each marker were
calculated as the mean detection range of each group. Separate
detection thresholds were determined for each viewing/lighting
condition combination.

Results

Daylight trials

Testing under both daylight conditions resulted in "ceiling"
effects. Nearly all subjects, wearing either clear or tinted
visors, reliably could detect the positions of each of the
markers at the maximum (4200 feet) available range. These
results are shown in Table 2.

Nighttime trials

Table 3 shows the results for the nighttime unaided viewing
conditions. For the standard lighting configurations (position
lights alone or anticollision lights in combination with position
lights), the reflective polyhedron designs (markers 4 and 5)
provided the longest detection ranges. Marker 2, the sphere with
the reflective cross pattern, while superior to either baseline
design, provided only 20-44 percent of the detection range of
Markers 4 and 5. With the searchlight on, the enhanced designs
were clearly superior to both baseline markers. However, as in
the case of the daylight trials, ceiling effects precluded
detection of differences between any of the reflective designs.
Under blackout conditions, where the sources of illumination were
limited to the moon and artificial ambient lighting, detection
ranges were reduced markedly (and nearly equivalent) with each
design.
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Table 2

Mean (and standard deviation) detection ranges
under daylight conditions (in feet).

Sun angle 1 Sun angle 2
Wire

marker* Clear visor Tinted visor Clear visor Tinted visor
N=4 N=3 N=4 N=4

1 4200 4189 4175 4150

(0) (20) (50) (58)

2 4200 4167 4200 4200

(0) (58) (0) (0)

3 4200 4200 4200 4200

(0) (0) (0) (0)

4 4200 4200 4200 4200
(0) (0) (0) (0)

5 4200 4200 4200 4200

(0) (0) (0) (0)

Table 3

Mean (and standard deviation) detection ranges
under nighttime conditions: Unaided viewing

(in feet; N=8/condition).

Wire Position Anticollision Searchlight Blackout
marker* lights lights

1 125 213 1200 63
(83) (60) (112) (70)

2 488 688 4200 125
(60) (60) (0) (43)

3 138 213 1313 63
(48) (60) (136) (48)

4 750 1163 4200 138
(71) (132) (0) (48)

5 613 1225 4200 88
(78) (139) (0) (33)

* (For all tables). Marker 1: Uniform sphere
Marker 2: Sphere with reflective tape
Marker 3: Uniform polyhedron
Marker 4: Polyhedron with white reflective sheeting
Marker 5: Polyhedron with yellow reflective sheeting
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Table 4

Mean (and standard deviation) detection ranges
under nighttime conditions: AN/PVS-5 viewing

(in feet; N=4/condition).

Wire Position Pinklight Blackout
marker* lights searchlight

1 450 525 750
(50) (109) (50)

2 1250 1375 825
(50) (327) (163)

3 600 750 975
(48) (50) (286)

4 1825 1975 850
(179) (268) (50)

5 1975 1875 700
(238) (311) (71)

Table 5

Mean (and standard deviation) detection ranges
under nighttime conditions: ANVIS viewing

(in feet; N=4/condition).

Wire Position Pinklight Blackout
marker* lights searchlight

1 475 575 750
(43) (83) (50)

2 1425 1600 825
(83) (406) (43)

3 675 750 1050
(109) (150) (384)

4 2025 2200 950
(249) (406) (87)

5 2050 2250 825
(269) (269) (43)

* (For all tables). Marker 1: Uniform sphere

Marker 2: Sphere with reflective tape
Marker 3: Uniform polyhedron
Marker 4: Polyhedron with white reflective sheeting
Marker 5: Polyhedron with yellow reflective sheeting
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Viewing performance with AN/PVS-5 and ANVIS image
intensification devices are shown in Tables 4 and 5. As
expected, detection ranges were greater, under comparable
illumination (in this case, either with position lights [steady
bright vs. dim] or under blackout conditions), with image
intensification devices than without. In addition, detection
ranges for each of the reflective designs were slightly longer
(from 0-20 percent; average = 10 percent) with ANVIS than with
the AN/PVS-5s. Estimates of the relative improvements afforded
by image intensification devices over naked eye viewing and by
ANVIS over AN/PVS-5s are shown for each of the markers under
several lighting conditions in Appendices A-C.

As in the unaided trials, the two reflective polyhedron
designs (markers 4 and 5) provided the greatest detection ranges
either with position lights on (steady dim) or by direct
illumination via the infrared-filtered searchlight. As before,
marker 2 yielded an average detection range intermediate to those
of markers 4 and 5 and the baseline designs. Detection ranges
for all markers were very similar with both image intensification
devices under blackout conditions. The apparent improvement in
performance seen with the baseline designs (Markers 1 and 3)
under blackout conditions may be due to an enhancement in
apparent target-background contrast, i.e., improved goggle
sensitivity, under "normal" ambient levels of illumination (and
without compensatory adjustment of goggle output in the presence
of additional sources of aircraft light).

Due to the costs and logistics associated with wire marker
systems, the identification of a single design useful under all
lighting and viewing conditions is desirable. Tables 6 and 7
summarize the data from which such a candidate marker may be
selected.

Table 6 presents the increases in detection range among the
wire markers relative to that found with the current Army design,
marker 1. Because of the inability to distinguish among the
designs under daylight conditions, the data are shown for
nighttime trials only. For unaided viewing at night, 4200 feet
(the maximum or ceiling value) was chosen arbitrarily as the
range associated with the use of the searchlight for markers 2,
4, and 5.

As can be seen in Table 6, under typical aircraft lighting
schemes, markers 4 and 5 were effective at ranges approximately
four to six times as great as the current design, both with the
naked eye and with image intensification devices. No clear-cut
advantage was observed with any marker under blackout conditions.
In general, the relative rankings of the designs were fairly
consistent among each of the viewing and lighting conditions
tested.
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Table 6

Range increases (increase factors) among wire markers
relative to the current Army design (marker 1).

Nighttime: Unaided

Wire Position Anticollision Searchlight Blackout

marker* lights lights

2 3.9 3.2 3.5 2.0

3 1.1 1.0 1.1 1.0

4 6.0 5.5 3.5 2.2

5 4.9 5.8 3.5 1.4

Nighttime: AN/PVS-5

Wire Position Pinklight Blackout
marker lights searchlight

2 2.8 2.6 1.1

3 1.3 1.4 1.3

4 4.1 3.8 1.1

5 4.4 3.6 0.9

Nighttime: ANVIS

Wire Position Pinklight Blackout
marker lights searchlight

1

2 3.0 2.8 1.1

3 1.4 1.3 1.4

4 4.3 3.8 1.3

5 4.3 3.9 1.1

* Marker 1: Uniform sphere
Marker 2: Sphere with reflective tape
Marker 3: Uniform polyhedron
Marker 4: Polyhedron with white reflective sheeting
Marker 5: Polyhedron with yellow reflective sheeting
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Table 7

Summary of daytime/nighttime mean detection ranges.

Detection range (ft)
Viewing Wire marker*
condition 1 2 3 4 5

Daytime 4182 4192 4200 4200 4200

Nighttime
Unaided 400 1375 432 1563 1532
AN/PVS-5 463 1604 505 1696 1633
ANVIS 600 1283 825 1725 1708

Average
nighttime 488 1421 587 1661 1624

* Marker 1: Uniform sphere
Marker 2: Uniform sphere with reflective tape
Marker 3: Uniform polyhedron
Marker 4: Polyhedron with white reflective sheeting
Market 5: Polyhedron with yellow reflective sheeting

Table 7 presents the detection range means for each marker
design for each viewing condition across all lighting conditions.
For the nighttime, an average of the means of the three viewing
conditions also is given for each design. These data confirm the
relative rankings of each of the designs and indicate the general
increase in detection range afforded by the reflective
polyhedrons at night.

Discussion

The selection of a wire marker for Army aviation must be one
which provides the greatest detection range across all lighting
and viewing conditions. For the daytime conditions, ceiling
effects, caused by restricted test space (4200 foot maximum
working distance), prevented discrimination between designs.
Thus, only minimal differences in performance among any of the
tested markers were observed. However, at a range of 4200 feet,
the approximate 11.5 inch diameter of the various designs
subtends an angle of about 23 arc seconds. The 1.5 and 2.5 inch
pieces of reflective materials used for enhancement correspond to
3.0 and 5.0 arc seconds, respectively. It can be suggested that
detection at this range is primarily a function of both shape
(spherical), color (orange), and contrast (lighter object against
a darker tree line) rather than specular reflection or detail
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within the shape. Therefore, it is unlikely that differences in
detection range between any of the designs would be obtained at
greater observation ranges. (However, differences in
conspicuity, and, hence, dete-tion range, could result from
differences in specular reflectivity with more mobile targets or
viewing from a more mobile platform.)

Three viewing systems are used for night flight, i.e., the
unaided eye, the AN/PVS-5 night vision goggle, and the ANVIS.
Each of these systems has a different spectral response and
sensitivity. With all of these systems, the detection range of
the various designs depends on the level of light, the spectral
distribution of the ambient lighting, and the spectral reflective
properties of the markers.

For unaided viewing in the presence of artificial lighting
in the form of position and anticollision lights, the three
designs using reflective material provided the greatest detection
ranges with markers 4 and 5 providing nearly twice the range of
marker 2. Under the increased directional output provided by the
searchlight, a ceiling effect prevented discrimination between
the three reflective designs -- all three designs were equally
detectable out to the maximum test range of 4200 feet. Under
blackout conditions, with moonlight as the principal source of
illumination, detectability among designs was considerably
reduced and nearly equivalent.

Similar trends in the data were observed with image
intensification devices, either AN/PVS-5's or ANVIS. With the
aircraft's position lights on steady dim or illuminated with the
"pinklight" searchlight, detection ranges with the
retroreflective polyhedrons were generally superior to the other
designs. (As expected, the greater sensitivity afforded by ANVIS
resulted in uniformly increased detection ranges.) Under normal
low-light ambient conditions ("blackout"), no significant
advantage in detectability was observed among any of the tested
designs.

Recommendations

The results of this study demonstrate both viewing- and
lighting-specific effects for each of the marker designs tested.
While no differences among designs were observed under daylight
conditions, improved performance under several viewing/lighting
conditions was observed for both retroreflective polyhedrons
(Markers 4 and 5) under typical aircraft lighting conditions at
night. Increased detection ranges were noted both with and
without image intensification devices and under aircraft lighting
conditions characteristic of the local aviation training
environment. It should be emphasized that, because of the benign
and relatively static conditions under which the data were
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collected, it may be erroneous to use the ranges in the data
tables as typical detection distances under training or
operational conditions. Nor should these data be used in
conjunction with typical airspeeds to derive putative aviator
reaction times in field situations where search behavior is
required. However, our data indicate that the reflective
polyhedrons (markers 4 and 5) should provide relatively greater
conspicuity, and hence a greater margin of operator and training
safety, than designs (markers 1 and 2) currently in use.
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Appendix A.

Absolute and relative differences -In detection range:
AN/PVS-5 vs. unaided viewing.

Position lights* Blackout
Wire
marker Absolute Relative Absolute Relative

difference** difference*** difference difference

1 325 3.6 687 12.0

2 762 2.6 700 6.6

3 1 462 4.4 912 15.6

4 1075 2.4 712 6.2

5 1362 3.2 612 8.0

*Low for AN/PVS-5; high for unaided viewing
**Range 1A"VS-5 1-Range (Uoaidedl

***Range [AN/PS-5 1 /Range [Unakd
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Appendix B.

Absolute and relative differences in detection range:
ANVIS vs. unaided viewing.

Position lights* Blackout
Wire

marker Absolute Relative Absolute Relative
difference** difference*** difference difference

1 350 3.8 687 12.0

2 937 2.9 700 6.6

3 537 4.9 987 16.8

4 1275 2.7 812 6.9

5 1427 3.3 737 9.4

* Low for ANVIS; high for unaided viewing
** Range [ANVlIS-Range [Unadeq
*** Range [ANVis]/Range [Unkkd]
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Appendix C.

Absolute and relative differences in detection range:
ANVIS vs. AN/PVS-5.

lgt*Searchlight Blackout
Wire

marker Abs** Rel*** Abs Rel Abs Rel

4 200 1.11 225 1.11 100 1.12

575 1037 1.0 15 11

*Low intensity
**Range 1AN1IS-Range (AN/PYS-6I

***Range ANV, 15 /Range (ANIPVS-51
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